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UNSTEADY FREE CONVECTION HEAT TRANSFER o

By E. M. Sparrow® and J. L. Gregg
NASA, Lewis Research Center, Cleveland, Ohio

An analysis is wade for laminar free-convecticn heat trangfer from a ver-
tical surface whose temperasture varies with time in an arbitrary manner. A
quantitative criterion 1s derived which gives the conditions under which unsteady
heat-transfer calculations can be carried out simply by using heat-transfer
coefficients for the quasi-steady state (instantaneous steady state). Results
are given for Prandtl numbers ranging from 0.03 to 10. The findings reported
here should also serve to define quasi-steady conditions for turbulent free-

convection heat transfer.
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X coordinate measuring distance along plate from leading edge
y coordinate measuring distance normal to plate
y
Y transformed coordinate,.f. (o/p,)dy
0]
. s . 179

B coefficient of thermal expansion, - = 52

P\QT

D
o

1 similarity variable, [gB(AT)/4v” ]l/ 4Y/xl/ ¢
Cl temperature variable for quasi-steady state
2] dimensionless temperature, (T - T.)/(T, - T.)
06,687 functions of 1
Xo’xl series expansion parameters defined by eq. (8)
V) absolute vigcosity
v kinematic viscosity
p density
L4 stream function
Subscripts:
inst instantaneous
gas quasi-steady
w wall
% ambient

INTRODUCTION

In a number of important technical applications, it is necessary to com-

pute the free-convection heat transfer from a surface whose temperature changes

with time. This very difficult problem is appreciably simplified when it is

supposed. that at each and every moment, there exists an instantaneocus steady

state. Under such an assumption, the steady state relationships for the heat-

transfer coefficient are used in conjunction with the instantaneous tewmperature

difference to compute a heat transfer rate. It is customary to apply the termw
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quasi-steady to describe this situation where the transient passes through a
sequence of instantaneous steady states.

In reality, there is always a difference between the actual instantaneous
heat transfer and the quasi-steady value. The extent of the deviation depends
both on the rapidity of the changes in surface temperature and on the response
characteristics of the fluid. Clearly, quasi-steady heat transfer would not
be expected if the changes in surface temperature are exceedingly rapid.

Because of the tremendous practical simplifications associated with the
quasi-steady assumption, it is important to know the conditions under which it
can be invoked with negligible error. The aim of this analysis is to determine
a quantitative criterion to distinguish when the heat transfer is essentially
quasi-steady. The system chesen for study is a vertical plate as pictured in
Figure 1. The surface temperature T, is spatially uniform, but is permitted
to take on arbitrary, but continuously differentisble, variations with time.

The ambient temperature T, is taken as constant.

Results are presented here for Prandtl numbers ranging from 0.03 to 10.
The lower end of this range corresponds to liquid metals; the span from 0.65
to 1.1 is associated with gases; while liquids such as water, organic solvents,
and inorganic salts have Prandil numbers between 1 and 10.

Previous analytical work on unsteady free convection has been rather sparce.
Using the Karman-Pohlhausen technique, Siegel (1) studied the special problem
of a sudden step change in surface temperature or heat flux. TIllingworth (2)
and Sugawara and Michiyoshi (3) have also analyzed situations involving step
changes in surface temperature.

Readers who are primarily interested in results are invited to pass over

the section on ANALYSIS.
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ANALYSIS

Governing equations and boundary conditions. - To achieve our ultimate

goal of finding a criterion for the existance of quasi-steady conditions, we
must first analyze the velocity and temperature distributions in the boundary
layer adjacent to the vertical plate. The problem is, of course, governed by
the basic conservation laws: mass, momentum, and energy; and it is these
which are the starting point for our study. The mathematical expression of

these laws appropriate to unsteady flow in a boundary layer on a vertical

plate is
25 (ow) + 3 (o) =0 W)
p(%%+u%;+vg-§)=igﬁp(T-Tw)+<—%(u%§) (2)
oT oT oT 3 oT
o (Fru v §) -5 () (3)

where B = ;L/T°° for gases. The essential term in these equations is

gBp(T - T.), which represents the buoyancy force responsidble for the free
convection motion. Viscous dissipation and work against the gravity field have
been neglected in accordance with the usual practice in free convection.

By affixing the plus-minus signs to the buoyancy term of equation (2), we are
able to simultaneously analyze both of the physical situations pictured in
figure 1. The left hand sketch (a), associated with the plus sign, depicts

the case where the wall teuperature exceeds ambient and the boundary layer flow
is upward. The right hand sketch (b), with which the minus sign is used,
represents the case where T, < T_ and the flow is downward in the boundary
layer. Throughout the analysis and the presentation of results, there will

be no need to make any particular distinction between these two situations.
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The statement of the problem is completed by giving the boundary condi-

tions as follows:

u=0
u-=+0 )

v =20 y=0 y > (4)
T T

T = Ty (t) T e

where T, (t) is any arbitrary, but continuously differentiable function of time.

The requirement that each velocity component vanishes at the plate surface
arises from the no-slip condition of viscous flow (u = 0) and the imperme-
ability of the wall to mass (v = 0).

Proceeding in a general way, we observe that the conservation of mass
equation (1) may be satisfied by defining a stream function ¥ by the rela-

tions (ref. 4, eq. (5))

Y
_ Po oy _ Poo [ OV b jl
u—?a, V—-B—&+E pmd.')’ (la)

Then, by replacing u and v in favor of ¥ and introducing the fol-
lowing new variables
T - T, Yo
O =7 Y=O;;;dy (5)

equations (2) and (3) may be rephrased as

2 2 3

S 3 ke - B - esleme v za
9 AT Oy dyd v 9%
S tORT S o 5 5T B og? (3e)

where AT = |T, - Tol, AT = 4(AT)/at

To simplify the treatment, we have neglected the variation of fluid properties

in liguids. In the case of gases, it has been supposed that the properties

may be approximated by pp = constant, pk = constant, Cp = constant, and as a
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consequence, the kinematic viscosity in equations (2a) and (3a) is evaluated
at anmbient conditions.

In terms of these new variables, the boundary conditions become
\

Y/OY = 0
¥y >0

o/3x =0} Y=0 Y- = (42)
6 »0

6 =1

Having completed the formulation, we now turn to the task of solving the for-
midable mathematical problem represented by the simultaneous partial dif-
ferential equations (2a) and (3a) for ¥ and 6 as functions of x, Y, and t.
SOLUTIONS
As has already been mentioned, the aim of this analysis is to investigate
the conditions under which the actual instantaneous heat transfer deviates only
slightly from the quasi-steady value. With this in mind, it is natural to seek
a solution for the temperature and velocity distributions in the form of a
series expansion about the quasi-steady state.
As a prelude to the series, we recall that for steady state conditions,
the stream function V¢ and dimensionless temperature @ are written as
v = [64gB(aTVESIY4R(n), 6 =8(n) (62)
where
N = [gB(aT) /av? [/ 4y /<M (6v)
The variable 1 1is the well-known similarity parameter first used by Schmidt

and Beckmann.
Then, shifting our attention to the unsteady situation, we expand ¥ and
6 in series about the quasi-steady state (i.e., the instantaneous steady state).

So,

v = (6gB(AT) V3 1{F() + Aofo(n) + MTy(n) + . . .} (7a)
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6 = 8(n) +xgfo(n) + 2y6,(n) + . . . (7v)
where
x 1/2 "
AT X AT X
Ao = 5w [aR T ] ’ M =55 | a7 T] S (8)
=S perveTo g il BLadh e S |

The expansion parameters xo, Xl, ... may be derived either by dimensional

arguments or by mathematical analysis. As shown in the Appendix, these param-
eters have a clear physical meaning which may be represented by the following

ratio

time for diffusion of temp. changes across bl (9)
time characteristic of wall temp. changes

where bl is an abbreviation for boundary layer. Clearly, this ratio will
be small when the boundary layer responds promptly to impressed changes in
wall temperature. For quickly responding boundary layers, i.e., small values

of Xgs A, -.., equations (7a) and (b) are consistent with the intuitive

feeling that the velocity and temperature distributions are gquasi-steady.

In the development which follows, it will be supposed that A, 1is sub-
stantially larger than Xy, A, ..., and as a consequence, the series (7a) and
(b) are truncated after the second term. In practical terms, this assumption
may be met when AT is much larger than the higher derivatives. It is im-
portant to note that the retention of additional terms of the series would not
alter the analysis, only the amount of numerical computations would be sub-
stantially increased.

Having settled on a series form for the solutions, we now return to the
differential equations (2a) and (3a). Introducing the expansions (7a) and (b)
for ¥ and 6 and grouping terms according to whether they are multiplied by

Aos» A1» -+, We are led to the following set of ordinary differential equations:
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@" + 3(Pr)Fe =0 e(0) =1, 8(e) = 0 (10a)
F'" + 3FF" - 2(F)2 + 8= 0 F(0) = F'(0) = O, F'(=) = 0 (10D)
6"

o + Pr(3Fe. - 2F'6_) - Pr(28 + 0.5n@" - 5 8') =0
6,(0) = 65(=) =0 (11a)

E-109

o' + 3FfS - 6F'fy + 5F'f, - (F' + 0.50F" - eo) =0

£o(6) = £4(0) = £4(=) = 0 (11p)
The boundary conditions have been evaluated by introducing the series for
and 6 into equation (4a).

Equations (10a) and (b) may be recognized as coinciding with the governing
equations for the steady-state free-convection problem, although here they ap-
ply to the quasi-steady situation. Numerical solutions™® of this pair of
simultaneous, nonlinear, ordinary differential equations has been carried
out on an IBM 650 digital computer for Prandtl numbers of 0.03, 0.72, and 10.
Then, using these solutions as input data, equations (1la) and (b) were also
solved for the same Prandtl numbers.

The important numerical results which are used in the heat transfer

calculations are listed in table I.

TABLE I. - FUNCTIONS NEEDED IN HEAT
TRANSFER COMPUTATIONS

Pr |-0'(0)|-64(0)|64(0)/@*(0)

0.03|0.1346(0.1317| 0.9785
72| .5046( .7721| 1.530
10 1.169 [4.605 3.938

HEAT TRANSFER RESULTS

Local and over-all heat transfer. - The instantaneous local heat flux at

the plate surface Qingt May be calculated by application of Fourier's law

*The numerical integration technique is outlined in reference 5.
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After introducing the series expansion (7b) for O and taking account of the

definition (6b) for n, the expression for q becomes

1/4
Yinst = :?74 [gZSgT)] / [@'(0) + XpB4(0) + . . -] (13)

where ©'(0), 6.(0), ..., are abbreviations for (dCVdn)n=o, ie .

The quasi-steady heat transfer dgs is given Dby

Then, the important relationship between the instantaneous and the quasi-steady

heat transfer is found by combining equations (13) and (14),

Yinst At 1/2 95(0)
—;‘1'—;% =1 +ZT[gB}ZAT)] RO (15)

where we have evaluated \, from the defining equation (8).

From table I, it is seen that 61(0)/@'(0) is positive for all Prandtl
numbers. Further, AT 1is always positive; being evaluated as Ty - T, when
the wall temperature exceeds ambient and as T_- T, when the wall is cooler
than ambient. So, it may be concluded from equation (15) that the instantaneous
heat transfer exceeds the quasi-steady value when the temperature difference
- T | increases with time (AT >0) and is less than quasi-steady when the

| T,

temperature difference is decreasing. A further conclusion may be drawn from
the fact that the ratio 64(0)/@'(0) decreases steadily with Prandtl number;
from which it follows from equation (15) that low Prandtl number fluids are
less likely to experience deviations from quasi-steady heat transfer than are
high Prandtl anumber fluids. This trend might have been intuitively antici-

pated as a consequence of the relatively high thermal diffusivity of liquid
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metals. The proceeding remarks apply with full certainty only when the

neglected terms of the series are very small.

An alternate form of the results may be obtained by introducing heat

transfer coefficients as follows:

b _ Yinst n = lgs
inst T "AT 4s = AT

Then, equation (15) may be rephrased as

hinst _ AT [ X ]1/2 95(0)

YA R ) 9" (0

= T + ... (15a)
Equation (15a) is in a form useful for the interpretation of heat transfer co-

gs

efficients obtained under transient conditions.
Next, we compute the heat transfer Q from the entire surface of the

plate by integrating the local heat transfer, i.e.,

Q= _foL q dax (16)
where the plate width has been chosen as unity. The integral is carried out
successively for the instantaneous and quasi-steady situations using q from
equations (13) and (14) respectively, and the results may be represented as

the following ratio
Qinst 1a7| 1 /2 91(0)
_1r1~':‘»_=1+___[ ] ° : (17)

eBln]| e "

Comparison of this expression with equation (15) shows that the over-all heat
transfer deviates less from quasi-steady then does the local heat transfer at
X = L. The finding is made plausible by noting that the over-all heat trans-
fer includes contributions from upstream locations (near x = 0) where the
boundary layer is thinner and more responsive to impressed changes.

Criterion for quasi-steady heat transfer. - We can now procced to find

a criterion for distinguishing the conditions under which the quasi-steady



E-109

- 11 -
relationship may be used with sufficient accuracy in unsteady heat transfer
calculations. Suppose that an accuracy of 5 percent is sufficient for the

local heat transfer for many applications. Then, from equation (15) in con-

- -

. . , ) AT X L/e .
Junction with table I, we are able to find the values of T [gB AT J which

lead to 5 percent deviations of qinst from qqs. The results thus obtained

are plotted as the upper curve of figure 2. Clearly, for values of

A@ b4 1/2

AT | R (AT lower than those given by this curve, the deviation of Uinst
from dgs is less than 5 percent.

Alternately, if an accuracy of 2 percent is sufficient for the local heat

arl_x |1/2
AT | 3B(AT)

to represent the criterion for quasi-steady heat transfer. These results are

transfer calculation, we can compute a second group of values for

shown as the lower curve of figure 2.

So, to determine whether the heat transfer for a particular experiment is

AT X 1/2

Z_T_ 8B N occurring

quasi-steady, we would check whether the values of

in that experiment fall below the selected curve of figure 2..-Alternately, for
design purposes, figure 2 immediatel ives the values of éi X 1/2 which
gn purp ) g y 8 AT QE?ZET

i

permit application of the quasi-steady heat transfer relationships.

APPLICATION TO ECKERT-SOEHNGEN EXPERIMENTS
An experimental determination of free convection heat transfer coefficients
on a vertical plate has been carried out by Eckert and Soehngen (ref. 6) using
the transient technique. Their apparatus consisted of a copper plate which
was preheated in a furnace and then suspended vertically in air to cool by
free convection and radiation. It was assumed that quasi-steady conditions
existed, so that the measurements were reported as steady state results. Values

\ 2
or AT [_E%ZEW]l/ from Eckert and Scehngen's experiments have been plotted as a
g

AT
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vertical band on the lower part of the figure. It is seen that the conditions
of the experiment fall well within both the 2 and 5 percent criteria for quasi-
steady heat transfer, thereby verifying the supposition of the experimenters.

CONCLUDING REMARKS

Stability questions. - It is natural to ingquire as to the effect of the

unsteady wall temperature on the stability of the free convection flow. Since
an adequate stability analysis of the steady free-convection boundary layer
has yet to be given, it would appear that such an analysis for the unsteady
situation is not now within range. So, we must confine ourselved to intuitive
conjectures about the role of the time-dependent wall temperature.

Our interest here has been in flows which are almost quasi-steady; that
is, in flows where the boundary layer is able to follow the changes in wall
temperature quite closely. At first thought, it might be expected that for
these conditions, the stability of the unsteady flow would not be too different
from that of the steady flow. 1In particular, the expectation seems quite
reasonable for flows where the temperature difference ]TW - TQI is steadily
increasing. However, when |Ty - T.| is steadily decreasing, it would seem
that the flow would be somewhat more prone to instability; while a flow in which
«ITW - T,| alternately increased and decreased would likely be even less stable.

Application to turbulent flows. - Although the analysis given here is for

laminar flow conditions, the findings may have a wider utility. Since the
response of a turbulent flow should be more rapid than that of laminar flow,
the criteria for quasi-steady heat transfer as given on figure 2 should certain-

ly also serve for turbulent flow.
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APPENDIX
PHYSICAL INTERPRETATION OF Ags M1y o

We want to show that the expansion parameters Ay, A\, ... given by
equation (8) are related to the ratio of the time for diffusion across the
boundary layer to the time characterising the impressed wall temperature
changes.

From one-dimensional diffusion theory, it may be recalled that the time
required for changes to diffuse across a layer of thickness & is proportional

to

SZ/V (18)
On the other hand, the boundary layer thickness for free convection is given by

-1/4 2. \1l/4
& . o.-1/a _ (gB(am)x5 vix
= ~Gry = ( =2 ) or % ~ (gﬁ T ) (19)

where Gry 1s the Grashof number. Introducing this into equation (18), the
diffusion time is found to be proportional to
1/2
X
< - ) (18a)

The time characterising the changes in wall temperature cannot be given

by a single quantity, but rather, will be represented by the following sets

a1, (ez)l/ 2 (%2)1/3, L (0)
AT AT AT

After forming the quotient of equation (18a) with the successive members

of times

of equation (20), we see that Ags A1s ... are indeed related to these ratios.
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